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Abstract- The simultaneous presentation of two color stimuli 
was used to determine whether a practical and rapid method of 
recording human color responses using visual evoked 
potentials (VEPs) can be done.  Multi-color stimulation which 
consists of two iso-luminant color stimuli presented with a 
pseudorandom binary sequence (PRBS) were employed to elicit 
VEPs, and the first-order binary kernel of the VEPs was 
calculated using multi-input system analysis technique.  The 
waveforms of the kernels elicited by the two color presentations 
were similar to those obtained by one color stimulation.  This 
indicated that the simultaneous presentation of two color 
stimulation is effective in detecting color responses.  However, 
the amplitudes of the kernels obtained by the two color 
stimulation method were different from those by one color 
stimulation. This may be because the effect of one color 
stimulus was weakened by the presence of the other color 
stimulus.  
Keywords - VEP, Pseudorandom Binary Sequence, Color 
Vision, Color Stimulation, Binary Kernel 
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I. INTRODUCTION 
 
Measurements of the responses elicited by color stimuli are 
important for investigating the characteristics of human 
color vision and for clinical testing of color vision.  Because 
visual evoked potentials (VEPs) are objective responses to 
visual stimuli and can be measured noninvasively, VEPs 
have been used to measure and analyze the human visual 
system [1]-[6].  Both luminosity and chromatic response 
components have been found in the transient and steady-
state VEPs, and analyses have indicated that VEPs can be 
used to test and characterize human color vision 
quantitatively [1]-[3].   

Because the VEP has nonlinear properties, a nonlinear 
system identification method is useful in describing the 
relationship between the stimulus and the VEP [4]-[8].  
Binary kernel expansion [8][9] is one of the nonlinear 
system identification methods and has been applied to 
characterize the VEP system. It has been demonstrated that 
the binary kernels of the VEPs include the opponent color 
responses, i.e., the responses of the two chromatic channels 
in the human visual system [4][5].  However, the VEP 
responses to eight color stimuli, i.e., eight individual VEP 
measurements, were necessary to extract the opponent color 
responses.  Thus, it required approximately two hours to 
obtain the VEP recordings [4][5].   
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It is important and more practical if the human color 
responses could be recorded more quickly.  Because 
subjects with normal color vision can perceive many colors, 
responses elicited by several color stimuli presented 
simultaneously would be necessary to measure and 
determine human color vision rapidly to avoid the color 
adaptation and/or fatigue. 

In order to develop a practical and rapid method to 
record human color responses using the binary kernels of the 
VEPs, two color stimuli were presented simultaneously and 
its validity in extracting color-specific responses was 
investigated. 
 
 

II. METHODOLOGY 
A. Multi-input System Analysis in Binary Expansion 
 
Causal and time invariant nonlinear systems can be 
described by their binary expansions [8][9] so long as the 
input is a binary (-1 or +1) sequence,  
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where )(tx  is the input, )(ty  is the output, nτ  is a time 
delay and ),,( 1 nnb ττ ⋅⋅  is the nth-order binary kernel.  R is a 
memory length of the system.  Identification of a nonlinear 
system means the identification of its binary kernels.  When 

)(tx  is a pseudorandom binary sequence (PRBS or binary 
m-sequence), the sliced kernels of all orders are lined up 
along the first-order cross-correlation cycle between )(tx  
and the corresponding system response )(ty  [9][10].   

This principle can be expanded to a multi-input 
( )(,),(),( 21 txtxtx mK , m: number of inputs) and one output 
( )(ty ) system.  When a PRBS ( )(1 tx ) and its shifted PRBS 
( )()( 12 σ−= txtx ) are used as input, binary kernels for 

each input ( ),,( 1
1

nnb ττ ⋅⋅  and ),,( 1
2

nnb ττ ⋅⋅ , the upper indices 
denote the input number) that can be obtained from the first-
order cross-correlation function between )(1 tx  and )(ty .  
This follows because PRBS are orthogonal to all of their 
cyclical shifts [9].   
 
B. Color Stimulation 
 

The stimulation and VEP measurement systems are 
shown in Fig. 1. The stimuli were two unpatterned colors 
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that were rapidly alternated according to a PRBS.  The 
PRBS was generated by a 12-bit shift register, and the shift 
register transitions were paced by a clock interval of 10 ms.  
This is the vertical scanning interval of the color monitor 
(SONY GDM-F500R) on which the color stimuli were 
generated.  Therefore, the duration of the stimulus was 
40,950 ms (=(212-1) x 10 ms).  Subjects viewed the stimulus 
binocularly, and the stimulus subtended a horizontal and 
vertical visual angle of 8 x 6 degrees, respectively.   

VEPs elicited by two kinds of stimuli, C1 and C2, were 
recorded and their binary kernels were compared.  C1 was a 
one color stimulus with an iso-luminant color stimulus 
alternated with a gray stimulus presented on the full field of 
the color monitor (Fig. 2 (a)).  C2 was a two color stimuli 
that was presented simultaneously with the stimulation field 
(monitor) divided into four squares.  The two different iso-
luminant color stimuli were presented in each square and 
each was alternated with a gray field (Fig. 2 (b)).   

The iso-luminant color stimulus was rapidly alternated 
with the two color targets.  Achromatic and chromatic colors 
whose luminance was constant (15 cd/m2) were switched by 
PRBS to elicit the VEPs. The achromatic stimulus (gray) 
was fixed as illuminant C, and the following eight chromatic 
colors were used: B, G, Y, and R (Fig. 3).  The chromatic 
colors were selected on the basis of cone sensitivities.  The 
chromatic variation along the LM axis in Fig. 2 (i.e., 
modulation of illuminant C and R or G) modulated only the 
activities of the L and M cones, while variation along the S 
axis modulated the activity of the S cones [3].   

For C1, VEPs to B, G, Y and R were recorded, and for 
C2, one color stimulus was based on a PRBS ( )(1 tx ) and 
the other was based on the shifted PRBS ( )()( 12 σ−= txtx ). 
VEPs to simultaneous R-G stimulation and Y-B stimulation 
were recorded.   
 
C.VEP Measurement and Analysis 
 

Bipolar EEG recordings were made between Oz and Cz 
(10-20 electrode system) with grounding at both ears. The 
amplified EEG signals were fed to an A/D converter with a 
sampling frequency of 500 Hz.  The stimulus was repeated 
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Fig.1. Color stimulation and VEP measurement systems.  
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 times, and the responses were averaged to extract the 
s.  VEPs for each stimulus were recorded from four 
r-normal subjects.   

Chromatic color and Gray 
were switched based on 
PRBS (x(t)) with 10 ms 
clock interval.  
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(a) One color stimulus (C1). 

 
G-C Modulation:  
Green and Gray were 
switched based on PRBS 
(x1(t)) with 10 ms clock 
interval.  
R-C Modulation:  
Red and Gray were 
switched based on PRBS 
(x2(t)) with 10 ms clock 
interval.  
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(a) Simultaneous two color stimuli (C2). 
s figure illustrates the simultaneous presentation of the R and G 
uli.  

Fig. 2. Color stimulation presented on color monitor. 
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Fig. 3. Chromaticity Diagram 
inary kernel slices were estimated by calculating the 
order cross-correlation function between the PRBS and 
orresponding measured VEP.   

 
III. RESULTS 

he first- and second-order kernel slices obtained from 
subject's VEPs are sorted in Fig. 4.  The two kernels 
ined from VEPs to C1 and C2 are overlaid, and the 
forms of the first-order kernels depended on the color 
e stimulus (Fig. 4).  The second-order kernels for R and 
imulation were approximately the same, and those for B 
Y were of low amplitudes.  The peak-polarity of the 
order kernels from 100 to 200 ms was different for the 
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color of the stimuli, while the implicit times of the peaks 
and valleys were generally equivalent.  These results 
indicate that only the first-order binary kernels include the 
responses to the color stimulus that is in agreement with 
previous studies [4]-[6].   

In comparing the results for C1 and C2 stimulation, the 
implicit times of the peaks and valleys of the binary kernels 
were approximately the same.  For Y and R stimulation, the 
waveform of binary kernels obtained from C1 and C2 
stimulation were approximately the same, although the 
implicit times of C2 were longer than those of C1 between 
150 and 300 ms.  For B and G stimulation, the amplitudes of 
the binary kernels for C2 were smaller than those for C1, 
although the implicit times of the peaks and valleys were 
approximately the same. As shown in each graph of Fig. 4, 
the correlation coefficients (r) of R and B were high, but 
those of G and Y were low for the first-order kernels.   
 
 

IV. DISCUSSION 
 

The binary expansion analysis technique for a multi-input 
system used in this study has been used for recording 
multifocal ERGs and VEPs [9]-[13].  Individual responses 
to small stimulus patches in the visual field can be recorded 
by this technique and an objective measurement system for 
detecting small visual field defects has been developed [11] 
and used for clinical studies [12][13]. 

We have applied this technique to detect the color 
responses in the VEPs to multi-color stimulation.  The 
binary kernels to each color stimulation of C2 were detected 
and their waveforms were similar to those obtained from C1 

stimulation.  This agreement indicates that multi-color 
stimulation (C2) can be effective for measuring the human 
color responses in a short time. Multi-color stimulation with 
two color stimuli can reduce the measurement time to 
approximately one-half of the conventional method.  For 
example, only four sessions of VEP measurements, i.e. half 
of eight sessions, are necessary to obtain the corresponding 
results of the previous studies [4][5].   

Previously, we demonstrated that the waveform of the 
first-order kernels was different depending on the color of 
the stimulus, and those of the second-order kernels were 
approximately the same except for Y and B stimuli [4][5].  
This would indicate that the first-order kernels include 
chromatic components.  We also presented evidence that the 
first-order kernels include the R-G and Y-B responses 
(opponent-color responses) [4][5], which are carried through 
the R-G and Y-B channels, respectively [2].  The first-order 
kernels correspond to the impulse responses of the linear 
component of the system, and the second-order kernels 
describe the nonlinearity of the system.  The differences of 
the second-order kernels also indicated a difference in the 
nonlinearity between the two chromatic channels.   

The relationship between the waveform of the binary 
kernels and the color of the stimuli (Fig. 4) agreed with 
those in previous studies.  The waveform of first-order 
kernels is dependent on the colors of the stimuli, and the 
reverse of first-order kernels ( )(1 τb− ) for R (Y) is similar to 
those for G (B), indicating that the first-order binary kernels 
includes the opponent-color responses. 

Furthermore, the results of the simultaneous presentation 
of two color stimuli (C2) also agreed with the previous 
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results. This indicated that the multi-color stimulation can be 
used effectively to record the color responses by the VEP.  
A shorter measurement time can be obtained by using multi-
color stimulation in which more than two color stimulation 
are presented simultaneously.  However, in C2 stimulation, 
the amplitudes of binary kernels for one color were smaller 
than those in C1 stimulation.  This may be because the 
effect of each color stimulus was depressed by the 
simultaneous presentation.  A balance of the features of two 
colors in C2 stimulation, e.g. chromaticity and stimulus size, 
should be considered in future studies.   
 
 

V. CONCLUSION 
 

 To develop a practical and rapid method to measure 
human color responses using visual evoked potentials 
(VEPs), simultaneous presentations of two iso-luminant 
color modulation stimuli were used. The waveform of first-
order binary kernels obtained by the two color stimuli was 
similar to those obtained by one color stimulation indicating 
that simultaneous presentation of two color stimulation is 
effective for detecting color responses. However, in the case 
of some stimulus colors, the effect of each color stimulus 
was weakened by the simultaneous presentation.   
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